22 research outputs found

    A network traffic flow model for motorway and urban highways

    Get PDF
    The research reported in this paper develops a network level traffic flow model (NTFM) which is applicable for both motorway and urban roads. It forecasts the traffic flow rates, queue propagation at the junctions and travel delays through the network. NTFM uses sub-models associated with all road and junction types which comprise the highway. The flow at any one part of the network is obviously very dependent upon the flows at all other parts of the network. To predict the two-way traffic flow in NTFM, an iterative simulation method is executed to generate the evolution of dependent traffic flows and queues. To demonstrate the capability of the model it is applied to a small case study network and a local Loughborough-Nottingham highway network. The results indicate that NTFM is capable of identifying the relationship between traffic flows and capturing traffic phenomena such as queue dynamics. By introducing a reduced flow rate on links of the network then the effects of strategies employed to carry out roadworks can be mimicked

    Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress

    No full text
    Recent studies have revealed a previously unanticipated level of biodiversity present in the Antarctic littoral. Here, we report research on the ecophysiological strategies adopted by intertidal species that permit them to survive in this environment, presenting cold-tolerance data for the widest range of invertebrates published to date from the Antarctic intertidal zone. We found significant differences in levels of cold tolerance between species within this zone. However, and contrary to expectations, intraspecific comparisons of subtidal and intertidal groups of eight species found significant differences between groups in only three species. One species, the nemertean Antarctonemertes validum, showed evidence of the presence of antifreeze proteins (thermal hysteresis proteins), with 1.4°C of thermal hysteresis measured in its haemolymph. We found a strong inverse relationship across species between mass and supercooling point, and fitted a power law model to describe the data. The scaling exponent (0.3) in this model suggests a relationship between an animal’s supercooling point and its linear dimensions
    corecore